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A B S T R A C T   

Passive acoustic monitoring is increasingly used for assessing populations of marine mammals; however, analysis 
of large datasets is limited by our ability to easily classify sounds detected. Classification of beaked whale 
acoustic events, in particular, requires evaluation of multiple lines of evidence by expert analysts. Here we 
present a highly automated approach to acoustic detection and classification using supervised machine learning 
and open source software methods. Data from four large scale surveys of beaked whales (northwestern North 
Atlantic, southwestern North Atlantic, Hawaii, and eastern North Pacific) were analyzed using PAMGuard 
(acoustic detection), PAMpal (acoustic analysis) and BANTER (hierarchical random forest classifier). Overall 
classification accuracy ranged from 88% for the southwestern North Atlantic data to 97% for the northwestern 
North Atlantic. Results for many species could likely be improved with increased sample sizes, consideration of 
alternative automated detectors, and addition of relevant environmental features. These methods provide a 
highly automated approach to acoustic detection and classification using open source methods that can be 
readily adopted for other species and geographic regions.   

1. Introduction 

Passive acoustic monitoring (PAM) has proven to be a valuable tool 
for studying populations of marine mammals (Parijs et al., 2009); 
however, the value of these studies depends on our ability to identify the 
sources of the sounds we are monitoring. Historically, experienced ac-
ousticians have manually identified stereotyped sounds that could reli-
ably be attributed to a given species, based on their spectral or temporal 
characteristics (Baumann-Pickering et al., 2013; Bittle and Duncan, 
2013; Rankin and Barlow, 2005; Soldevilla et al., 2008). However, the 
substantial increase in the quantity of recordings being made make it 
impossible for experienced acousticians to manually annotate it all. This 
has led to an increased need for the development of automated 

classification routines that can provide accurate species determinations 
from acoustic recordings. 

Advances in computing have led to a dramatic increase in the op-
portunities to use machine learning for bioacoustic classification 
(Bianco et al., 2019; Mutanu et al., 2022; Stowell, 2022). In particular, 
use of deep neural networks show great promise for large datasets on a 
wide variety of taxa, including marine mammals (Frainer et al., 2023; 
Frasier et al., 2017; Li et al., 2020a; Román Ruiz et al., 2023; Zhong 
et al., 2020). Neural networks typically require significant sample sizes 
for all classes, although there are increasingly new tools to enhance data 
or combined disparate datasets (Dufourq et al., 2022; Nanni et al., 2020; 
Nolasco et al., 2023; Padovese et al., 2023; Shorten and Khoshgoftaar, 
2019). There is a significant learning curve to understand how to 
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properly apply and test neural network classification methods on a novel 
dataset, although development of more user friendly tools are in 
development (Kahl et al., 2021; Kirsebom et al., 2022). Despite the great 
potential for deep learning methods, modification of existing machine 
learning methods with a lower barrier to entry may be sufficient for 
many bioacoustic classification tasks. 

Random Forest based acoustic classifiers have been found to be 
relatively easy, efficient, and effective approach to bioacoustic classifi-
cation (López-Baucells et al., 2019; Ross and Allen, 2014). BANTER 
(Bio-Acoustic eveNT classifiER) is a hierarchical Random Forest (Brei-
man, 2001) event classifier originally developed for species identifica-
tion of dolphin signals from acoustic recordings (Rankin et al., 2017). 
BANTER combines information from independent classification models 
for each call type (e.g., whistles, echolocation pulses, and burst pulses 
for the dolphin-based model) into a model classifying a full acoustic 
event, which is defined as a discrete collection of calls during an 
encounter. The event classifier uses the distribution of species assign-
ment probabilities for each call type, along with any event-level metrics 
(such as call rate). BANTER is very flexible and can accommodate any 
number of measures from any number of detectors used to identify calls 
from any species. BANTER is easy to use and is readily available as a 
stand-alone R package (Archer, 2022a). 

While BANTER was designed to classify events by integrating in-
formation from multiple types of call detectors, relatively minor changes 
to a detector for a specific call type could yield different detector results. 
In the dolphin-based model (Rankin et al., 2017), settings for a whistle 
and moan detector were modified to improve performance at detecting 
burst pulses. This approach of applying output from multiple call de-
tectors (of the same type but with different settings) suggests that 
perhaps BANTER could be used on species that only produce one call 
type (or where only one call type is to be analyzed), as long as the set-
tings of the automated call detector were modified such that the results 
were different. This approach was successfully applied to classified 
echolocation pulses for narwhals and belugas (Zahn et al., 2021). For 
species that primarily (or exclusively) produce echolocation pulses, 
BANTER may serve as an option for automated machine learning 
classification. 

Beaked whales are deep diving marine mammals found in offshore 
waters; their long dive intervals and cryptic surfacing behavior make 
them difficult to study using typical shipboard visual observation 
methods (MacLeod, 2018). However, beaked whales make stereotyped 
echolocation signals in the form of frequency-modulated (FM) pulses 
that have temporal and spatial characteristics that can be used to 
differentiate species (Baumann-Pickering et al., 2013). Detection of 
beaked whale signals in large datasets is greatly expanding our under-
standing of their population structure and the potential impact of human 
activities on these species (Barlow et al., 2022b; Baumann-Pickering 
et al., 2014; Simonis, 2020). Unfortunately, manual classification of 
beaked whale echolocation pulses requires analysis by trained analysts 
using a number of visual aids to examine the call characteristics. 
Development of automated classification routines, if accurate, serves to 
improve the efficiency, reduce the subjectivity, and decrease the cost of 
analyzing large datasets. 

Here we applied BANTER acoustic classification to beaked whale 
detections from large acoustic datasets from the U.S. East Coast, Hawaii, 
and the U.S. West Coast. Acoustic data were analyzed by experienced 
acousticians to determine species identity, and these ‘ground truth’ 
classifications served as training data for the supervised BANTER 
models. Our goals were to identify an efficient and accurate automated 
approach to acoustic species identification of beaked whales, and to 
provide a framework for analysis that may serve for other PAM studies. 

2. Materials and methods 

2.1. Field data collection 

Passive acoustic data were collected during surveys conducted by the 
National Oceanographic and Atmospheric Administrations’ (NOAA) 
research operations off the U.S. East Coast, the Hawaiian Islands, and the 
U.S. West Coast. 

Recordings from the U.S. East Coast (western North Atlantic Ocean) 
were collected using towed hydrophone arrays during the 2016 
AMAPPS II (Atlantic Marine Assessment Program for Protected Species) 
survey by Northeast Fisheries Science Center and Southeast Fisheries 
Science Center (United States National Marine Fisheries Service, 2016). 
AMAPPS II was subdivided into the northern (NAtlantic) and southern 
(SAtlantic) survey areas. The NAtlantic study area ranged from Massa-
chusetts south to New Jersey (HB1603, Appendix A, (United States 
National Marine Fisheries Service, 2016)) and recordings used in this 
analysis were collected with two hydrophones (HTI-96-min, High Tech 
Inc., Long Beach, MS), which recorded at a 192 kHz sample rate with a 1 
kHz high pass filter (National Instruments USB-6356 A/D card, see 
DeAngelis et al. (2018) for more information). The SAtlantic area ranged 
from Delaware south to central Florida (GU1605, Appendix B, (United 
States National Marine Fisheries Service, 2016)) and recordings used in 
this analysis were collected with two hydrophones (Reson TC4013, 
Teledyne Marine, Slangerup, Denmark), which recorded at a 500 kHz 
sample rate (custom 12 channel SailDAQ soundcard) and were deci-
mated to 192 kHz with a 1 kHz high pass filter (see GU1605, Appendix B, 
(United States National Marine Fisheries Service, 2016) for more in-
formation). The NAtlantic and SAtlantic recordings were treated as two 
separate datasets due to differences in hydrophone frequency responses 
and sensitivities. 

Recordings from Hawaii were collected using drifting acoustic re-
corders during the 2017 HICEAS (Hawaiian Island Cetacean Ecosystem 
Assessment Survey, McCullough et al. (2021), Yano et al. (2018)). 
Drifting acoustic recorders were deployed at randomly selected loca-
tions within the Main Hawaiian Islands. Data were collected using 
SoundTrap ST4300 recorders (Ocean Acoustics, Auckland, New Zea-
land) sampled at 288 kHz with a duty cycle of 2 min on for every 10 min. 
Individual drifting recorders were deployed for 11 to 23 days (see 
McCullough et al. (2021), Yano et al. (2018) for more detailed 
information). 

Recordings from the eastern North Pacific Ocean off the U.S. West 
Coast (EPacific) were collected using drifting acoustic recorders during 
the 2018 CCES (California Current Ecosystem Survey) (Simonis, 2020). 
Drifting recorders were deployed at 23 stations distributed throughout 
the California Current region; data from 15 of these included high 
quality acoustic data used in this analysis. Two types of drifting re-
corders were used: (1) SoundTrap ST4300 recorders (Ocean Acoustics, 
Auckland, New Zealand) and (2) Wildlife Acoustics SM3M recorders 
(Wildlife Acoustics, Maynard, MA). Recordings were duty cycled and 
recorded 2 min out of a variable ‘off’ time; recorders sampled at a 
minimum 256 kHz sample rate. Individual drifting recorders were 
deployed for 5–79 days (see Simonis (2020) for more detailed 
information). 

2.2. Acoustic data analysis 

All acoustic recordings were analyzed using PAMGuard software 
(versions 2.00.15c, 2.00.16e) with a suite of generic click classifiers 
within the Click Detector module (see Keating and Barlow (2013)). 
Classifier sets were saved such that any click may be classified as more 
than one click type (using ‘save classifier set’ in Pamguard click classi-
fication window). Five general click classifiers were treated as spectral 
band click detectors (i.e., 2–15 kHz, 15–30 kHz, 30–50 kHz, 50–80 kHz, 
and > 80 kHz). An additional sixth detector within the 30–50 kHz peak 
frequency range considered the presence of a frequency sweep that is 
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characteristic of beaked whale pulses (see Keating and Barlow (2013)). 
Echolocation signals that were identified as frequency-modulated 

pulses from beaked whales were then linked to PAMGuard “events” by 
experienced acoustic analysts. Events included all the pulses that were 
close to each other in time, had similar spectral and waveform charac-
teristics, and were received at consistent bearing angles. For NAtlantic 
and SAtlantic datasets, acoustic detections of beaked whales using 
towed hydrophone arrays were further subdivided into putative in-
dividuals by identification of consecutive pulses along the same bearing 
angle in the bearing time plot (see DeAngelis et al. (2017)). 

Experienced acoustic analysts used multiple lines of evidence 
(PAMGuard click detector bearing time display, click waveform display, 
click spectrum, and wigner plots) to assess the species identity of the 
acoustic event. When the available characteristics were inconclusive, 
the species was considered an unidentified beaked whale. Data were 
saved within the PAMGuard database and binaries for downstream 
processing using the PAMpal package (Sakai, 2021) in R v2022.07.02 
(Team, 2013). 

Standard click metrics describing the spectral and temporal charac-
teristics were measured from echolocation pulses using default values in 
PAMpal (Sakai, 2021). Inter-pulse interval (IPI) was calculated using the 
‘calculateICI’ function in PAMpal and the mode of the IPI was identified 
for each beaked whale acoustic event. In addition, for the EPacific data, 
we used the ‘matchEnvData’ function in PAMpal to include ERDAPP 
environmental data (Simons and John, 2022), including seafloor depth 
and seafloor gradient (both from erdSrtm30plusSeafloorGradient), as 
well as sea surface temperature (from jplMURSST41). A full consider-
ation of environmental data for all regions was beyond the scope of this 
study. 

Multiple models were created to better understand the value (and 
potential limitations) of the different suite of measurements. Models 
included standard click metrics (only) for all pulses in a beaked whale 
acoustic event (EC); the addition of IPI for each event (EC_IPI), and for 
the EPacific dataset we also included environmental variables 
(EC_IPI_ENV). 

2.3. BANTER acoustic classification 

BANTER models were created using the banter package (Archer, 
2022a) in R v2022.07.02 (Team, 2013). Output from PAMGuard click 
detector modules were used to create the BANTER detector models, for a 
total of 6 detector models (one for each click detector used). For each 
detector model, BANTER creates a mean of the species classification 
probabilities for each call type, which is applied to the BANTER event 
model (in conjunction with any event-level variables). A minimum of 
two events per species and the complete suite of variables (no missing 
data) were required for training and testing of the classification model. 
Event level variables included IPI and environmental variables (for the 
EPacific dataset). The Random Forest models that BANTER is based on 
are largely driven by two parameters, the number of trees in the forest 
(ntree) and the number of samples randomly drawn to build each tree 
(sampsize). Small values of sampsize were selected to improve compu-
tational performance, but large values of ntree were used to obtain 
models with stable classification results (Rankin and Archer, 2021). 
Model results were summarized using the rfpermute package (Archer, 
2022b). 

3. Results 

Four datasets from four different regions (NAtlantic, SAtlantic, 
Hawaii, EPacific) were analyzed for this study, and species included: 
Baird’s beaked whales (Berardius bairdii), Blainville’s beaked whales 
(Mesoplodon densirostris), Cross Seamount beaked whales (McDonald 
et al., 2009), Cuvier’s beaked whales (Ziphius cavirostris), Gervais’ 
beaked whales (M. europaeus), Hubbs’ beaked whales (M. carlhubbsi), 
Longman’s beaked whales (Indopacetus pacificus), Sowerby’s beaked 

whales (M. bidens), Stejneger’s beaked whales (M. stejnegeri), True’s 
beaked whales (M. mirus), and unidentified beaked whale ‘BW43’ 
(Baumann-Pickering et al., 2013). Analyses were conducted separately 
for the different study areas due to differences in the data collection 
methods that precluded combining of datasets. Species and sample sizes 
varied by study area. 

3.1. NAtlantic 

Species encountered in the NAtlantic dataset include Cuvier’s beaked 
whales (n = 120), Gervais’ beaked whales (n = 4), Sowerby’s beaked 
whales (n = 6), and True’s beaked whales (n = 76). BANTER classifi-
cation models included (1) echolocation pulses (EC), and (2) echoloca-
tion pulses and IPI (EC_IPI). 

For the NAtlantic dataset, the most accurate model included echo-
location pulse metrics with IPI; this model had a modest increase in 
accuracy over the EC (only) model (EC_IPI model, Detector Model: 
sampsize = 3, ntree = 10,000; Event Model: sampsize = 3, ntree =
100,000). This model provided an overall correct classification rate of 
97.5% for all four species (pct.correct in Confusion Matrix, Fig. 1 a). 
Classification scores ranged from 75% for Gervais’ beaked whales to 
100% for Cuvier’s and Sowerby’s beaked whales. All classification re-
sults were greater than expected (Priors in Fig. 1 a). Results from the 
EC_IPI model are presented here; results from the EC model were similar 
and can be found in supplementary materials (Supplement Fig. S1). 

The proximity plot (Fig. 1 b) provides a view of the distribution of 
events within the classification model space. For each event in the plot, 
the color of the central dot represents the true species identity, and the 
circle represents the BANTER classification result. This plot shows the 
degree of overlap between Gervais’, Sowerby’s, and True’s beaked 
whales. Species classifications of events are resolved using additional 
features (mean assignment probabilities for each of the detectors in the 
detector model, as well as any event level variables), as seen in the ten 
most important features for predicting each species (importance heat 
map, Fig. 1 c). The strength of classifications for each event can be seen 
in the distribution of votes for each species across the forest (Fig. 1 d). In 
each frame of this figure, the events are represented as vertical slices 
along the x-axis, and the percentage of votes for each species is repre-
sented by their color along that vertical slice in the y-axis. This distri-
bution shows strong assignment probabilities for most Cuvier’s and 
Sowerby’s beaked whale events, with greater variability in assignment 
for Gervais’ and True’s beaked whale events. 

3.2. SAtlantic 

Species encountered in the SAtlantic study dataset include Blain-
ville’s beaked whales (n = 46), Cuvier’s beaked whales (n = 111), 
Gervais’ beaked whales (n = 77), Sowerby’s beaked whales (n = 2), and 
True’s beaked whales (n = 13). BANTER classification models included 
(1) echolocation pulses (EC), and (2) echolocation pulses and IPI 
(EC_IPI). 

For the SAtlantic dataset, the most accurate model considered the 
echolocation pulse metrics and the IPI for an event (EC_IPI Model, De-
tector Model: sampsize = 4, ntree = 10,000; Event Model: sampsize = 1, 
ntree = 100,000) and provided an overall correct classification rate of 
88.7% for all five species. Classification scores ranged from a low of 50% 
(Sowerby’s beaked whale) to a high of 100% (True’s beaked whale, 
Fig. 1); all classification results were greater than expected (Priors in 
Fig. 1 a). The sample sizes for the BANTER model were kept low (event 
sampsize = 1) to retain Sowerby’s beaked whale, which had a sample 
size of 2. Analysis with a larger sample size resulted in improved clas-
sification results for Cuvier’s and Gervais’ beaked whale (see Supple-
ment Fig. S3 for EC_IPI_ALT), but resulted in the loss of Sowerby’s in the 
final model. Results from the EC_IPI model are presented here; results 
from the EC and EC_IPI_ALT model can be found in supplementary 
materials (Supplement Fig. S2, S3). 
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For this dataset, the two most important features are insufficient to 
differentiate species, as seen by the overlap in species distribution with 
these feature spaces in the proximity plot (Fig. 2 b). Importance vari-
ables varied by species (importance heat map Fig. 2 c), with IPI mea-
surements having relatively low importance (Fig. 2 c). The distribution 
of votes (Fig. 2 d) shows relatively weak classification results; most 

events consisted of <50% of the trees voting for the correct species. 

3.3. Hawaii 

The Hawaii dataset consisted of 13 drifting recorders deployed 
within the Main Hawaiian Islands; species included Blainville’s beaked 

Fig. 1. BANTER classification results from the NAtlantic dataset including echolocation pulses and inter-pulse interval (EC_IPI). Confusion matrix (a) provides the 
percent correct classification for each species (pct.correct), lower confidence intervals (LCI_0.95), upper confidence intervals (UCI_0.95), and priors (expected error 
rate). Proximity plot (b) for species events from BANTER model (central dot color represents true species identity; color of circle surrounding dot represents BANTER 
species classification). Heat map (c) for ranks of ten most important variables; colors scale from most important predictors (dark red) to least important predictors 
(dark blue). Vote Plot (d) shows the vote distribution for each event (vertical slice) for each species; distribution of votes by species is shown by their representative 
color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. BANTER classification results from the SAtlantic dataset (EC_IPI). Confusion matrix (a) provides the percent correct classification for each species (pct. 
correct), lower confidence intervals (LCI_0.95), upper confidence intervals (UCI_0.95), and priors (expected error rate). Proximity plot (b) for species events from 
BANTER model (central dot color represents true species identity; color of circle surrounding dot represents BANTER species classification). Heat map (c) for ranks of 
ten most important variables; colors scale from most important predictors (dark red) to least important predictors (dark blue). Vote Plot (d) shows the vote dis-
tribution for each event (vertical slice) for each species; distribution of votes by species is shown by their representative color. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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whale (n = 521), Cross Seamount beaked whale (n = 76), Cuvier’s 
beaked whale (n = 201), and Longman’s beaked whale (n = 122). 
BANTER classification models included (1) echolocation pulses (EC), 
and (2) echolocation pulses and IPI (EC_IPI). 

The most accurate model considered the echolocation pulses only 
(EC Model, Detector Model: sampsize = 10, ntree = 5000; Event model: 
sampsize = 4, ntree = 10,000) and provided an overall correct classifi-
cation rate of 92.3% for all four species. Classification scores ranged 
from a low of 86% (Cuvier’s beaked whale) to 97.5% (Longman’s 
beaked whale, Fig. 3). All classification results were greater than ex-
pected (Prior in Fig. 3 a). Results from the EC model are presented here; 
results from EC_IPI model can be found in supplementary materials 
(Supplement Fig. S4). 

Distinctive clusters can be seen for Longman’s and Blainville’s 
beaked whales, although there is overlap on these first two dimensions 
of the clusters for Cuvier’s and Cross Seamount beaked whales (Fig. 3 b). 
This overlap is resolved with different importance features for Cuvier’s 
and Cross Seamount beaked whales as seen in the importance heat map 
(Fig. 3 c), resulting in the low misclassification rates for these species 
(Fig. 3 a confusion matrix). The distribution of votes (Fig. 3 d) show 
strong classification results for most Blainville’s, Cross Seamount, and 
Longman’s beaked whales, with lower classification strength for many 
Cuvier’s beaked whale events. 

3.4. EPacific 

The EPacific dataset consisted of 15 drifting recorders deployed off 
the U.S. West Coast, and species included Baird’s beaked whale (n = 29), 
unidentified beaked whale ‘BW43’ (n = 125), Cross Seamount beaked 
whale (n = 6), Cuvier’s beaked whale (n = 926), Hubbs’ beaked whale 
(n = 66), and Stejneger’s beaked whale (n = 42). BANTER classification 
models included (1) echolocation pulses (EC), (2) echolocation pulses 
and IPI (EC_IPI), and (3) echolocation pulses, IPI, and environmental 
features (EC_IPI_ENV). 

The best model considered the echolocation pulses, IPI, and envi-
ronmental features (EC_IPI_ENV Model, Detector Model: sampsize = 1, 

ntree = 10,000; Event model: sampsize = 5, ntree = 10,000) and provided 
an overall correct classification rate of 91.9% for all six species. Classi-
fication scores ranged from a low of 91.2% (BW43) to 100% for Cross 
Seamount beaked whale (Fig. 4 a). All classification results were greater 
than expected (Prior in Fig. 4 a). Results from the EC_IPI_ENV model are 
presented here; results from the EC and EC_IPI model can be found in 
supplementary materials (Supplement Figs. S5, S6). 

There is considerable overlap in the primary feature space for all but 
BW43, as shown in the proximity plot (Fig. 4 b). IPI was among the most 
important classification variable for all species (Fig. 4 c importance heat 
map). The distribution of votes (Fig. 4 d) show relatively strong classi-
fication results for Baird’s, Hubbs’, and Stejneger’s beaked whales. 

4. Discussion 

Development of automated acoustic classifiers is critical for efficient 
analysis of large passive acoustic datasets; these classification routines 
require representative training data created by experienced acoustic 
analysts. While beaked whales species can be identified based on their 
stereotyped frequency-modulated echolocation clicks (Baumann-Pick-
ering et al., 2013), not all acoustic events include sounds that can be 
readily attributed to a specific species. Moreover, there are a number of 
beaked whales where little or nothing is known about their acoustic 
repertoire and new species have been detected in recent years (Barlow 
et al., 2022a; DeAngelis et al., 2018). Therefore, development of 
acoustic classifiers for beaked whales should accommodate small and/or 
unbalanced sample sizes and have sufficient flexibility to allow for 
variable call characteristics. 

The results for the four study areas varied from a low of 88.7% 
correct classification in the SAtlantic dataset to a high of 97.5% correct 
classification in the NAtlantic dataset. All species in all datasets had 
classification rates well above those expected by chance; however 
Cuvier’s (SAtlantic, Hawaii), Sowerby’s (SAtlantic), and Gervais’ 
beaked whales (NAtlantic) had classification rates below 90%. Recent 
beaked whale classification studies using deep learning methods exhibit 
more robust results (Cohen et al., 2022; LeBien and Ioup, 2018; Li et al., 

Fig. 3. BANTER classification results from the Hawaii dataset (EC). Confusion matrix (a) provides the percent correct classification for each species (pct.correct), 
lower confidence intervals (LCI_0.95), upper confidence intervals (UCI_0.95), and priors (expected error rate). Proximity plot (b) for species events from BANTER 
model (central dot color represents true species identity; color of circle surrounding dot represents BANTER species classification). Heat map (c) for ranks of ten most 
important variables; colors scale from most important predictors (dark red) to least important predictors (dark blue). Vote Plot (d) shows the vote distribution for 
each event (vertical slice) for each species; distribution of votes by species is shown by their representative color. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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2020b; Ziegenhorn et al., 2022); however, these models may not be 
appropriate for our dataset. Several studies included incomplete beaked 
whale species for the study area (Li et al. (2020b), Ziegenhorn et al. 
(2022)) and all studies has sample large sample sizes (>200) for each 
species class. The deep learning model developed by Cohen et al. (2022) 
included strong classification results with all beaked whale species 
found in our Atlantic models; however, it is unclear how this dataset 
trained on seafloor recorders would perform with towed array datasets. 
The BANTER models presented here only requires a minimum of two 
samples per class and can therefore include all species within each re-
gion, making them useful to assess the presence of all beaked whales in 
the region. While deep learning methods may provide improved results 
once there are sufficient sample sizes for all relevant species within a 
study area, our results suggest that reasonable classification results can 
be obtained for all species using BANTER classification methods with as 
few as two samples per class. 

Several of our datasets included very low sample sizes for some 
species; however, low sample sizes did not always result in low classi-
fication scores. In the NAtlantic dataset, Sowerby’s beaked whale (n = 6) 
was correctly classified in 100% of the events, with strong assignment 
probabilities. The Sowerby’s beaked whale events in the SAtlantic study 
and the Gervais’ beaked whale events in the NAtlantic study consisted of 
weak classifications. This is likely due to both a small number of events 
(n = 2 for Sowerby’s in SAtlantic and n = 4 for Gervais’ in NAtlantic) 
combined with the small sampsize used in the BANTER model. In gen-
eral, larger sample sizes should lead to improved overall classification 
results, and improved strength of these classification results (as indi-
cated in the vote distributions). 

While some species have distinctive differences in their pulse char-
acteristics that can lead to strong classification despite small sample 
sizes (e.g. Sowerby’s beaked whales in NAtlantic), other species, such as 
Cuvier’s beaked whales, have significant variation in their pulse mea-
surements. For species with high variability in the predictor variables 
and an overlap in the range of these variables with other species, a large 

sample size is required to describe the true variability of these call 
measurements. Even with reasonably large sample sizes, the classifica-
tion may suffer (e.g., SAtlantic Cuvier’s beaked whale = 82.8% correct 
classification). We found that by increasing the sampsize in BANTER, we 
could increase the classification rate for this species in this area to 91.8% 
(see Supplement Fig.S3). However, this resulted in the inability to 
include Sowerby’s beaked whale in the final model. So, an increased 
sample size in Sowerby’s would likely lead to increased classification 
results for other species in the model. 

Previous application of BANTER to dolphin species in the California 
Current found that large sample sizes could result in strong classification 
of species where experienced analysts are unable to differentiate species 
(e.g., long-beaked and short-beaked common dolphins, Rankin et al. 
(2017)). This suggests that large increases in sample sizes may improve 
classification results for Cuvier’s beaked whales. 

Gervais’ and True’s beaked whales have similar pulse characteristics 
that make them difficult to differentiate and they require considerable 
expertise to classify manually (DeAngelis et al., 2018). Our results 
suggest that BANTER may serve as an efficient and effective means of 
classifying and differentiating these two species. Despite modest sample 
sizes, Gervais’ and True’s beaked whales showed high classification 
scores in the SAtlantic (93.5% and 100%, respectively), and True’s 
performed well in the NAtlantic. Unfortunately, we were unable to 
combine the Atlantic datasets (which would increase sample sizes of 
True’s beaked whales) due to differences in hydrophone characteristics 
that resulted in differences in call metrics. Calibration of signals (to 
make them comparable) may allow for combining datasets to improve 
sample sizes. 

In addition to poor classification of Gervais’ in the NAtlantic study 
area, the plot votes show that for one of the four events, only a few of the 
100,000 trees ‘voted’ for Gervais’, and the majority of the votes were for 
True’s beaked whales. Analysts’ notes indicated uncertainty in manual 
species classification of this event in this dataset. While small sample 
size can at times provide good classification scores, as we found for 

Fig. 4. BANTER classification results from the EPacific dataset with environmental data (EC_IPI_ENV). Confusion matrix (a) provides the percent correct classifi-
cation for each species (pct.correct), lower confidence intervals (LCI_0.95), upper confidence intervals (UCI_0.95), and priors (expected error rate). Proximity plot (b) 
for species events from BANTER model (central dot color represents true species identity; color of circle surrounding dot represents BANTER species classification). 
Heat map (c) for ranks of ten most important variables; colors scale from most important predictors (dark red) to least important predictors (dark blue). Vote Plot (d) 
shows the vote distribution for each event (vertical slice) for each species; distribution of votes by species is shown by their representative color. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Sowerby’s beaked whale in this SAtlantic dataset, they can be heavily 
influenced by inaccuracies in the training data. 

These two examples of small sample sizes highlight a conflict in 
preferred protocol. Ideally, (1) all species would be included in a clas-
sification model, so as to better represent the local species diversity, (2) 
all events would ideally be included in the classification model, so as to 
better represent the variability found in the area, and (3) only confident 
‘ground truth’ classifications would be considered in the training model. 
Unfortunately, in species where identity must be determined based on 
call characteristics (rather than visual confirmation of species identity in 
the field), it can sometimes be difficult to confidently determine species 
identity when calls are highly variable and do not include at least one 
call that provides high confidence of species identity. In the case of 
beaked whales, we recommend that training data include a high level of 
confidence for inclusion. This is especially critical for species with small 
sample sizes. An alternative is to require agreement from multiple an-
alysts. This concern about accurate labeling of training data is further 
complicated by the potential existence of species that have not yet been 
identified. For example, Barlow et al. (2022a) recently discovered what 
appears to be a new species of beaked whale off Baja California, Mexico; 
this putative new species may have been detected but misclassified in 
other datasets (expert analysts did not identify these in the EPacific data 
presented here). 

Inter-pulse interval (IPI) was found to be the most important variable 
for NAtlantic and EPacific, and IPI was the fourth and fifth ranked 
variables for SAtlantic (see importance heat maps for each survey area). 
While the addition of IPI did not improve results for data from Hawaii, 
results were similar and IPI ranked #9 in importance for the Hawaii 
study area. Baumann-Pickering et al. (2013) showed an overlap in the 
IPI between Cuvier’s and Blainville’s beaked whales, but a strong dif-
ference in IPI between these species and Cross Seamount beaked whales. 
It is possible that classification of these species could be improved by 
refining an event to annotation at the individual level, as was done with 
the NAtlantic and SAtlantic datasets. Subdividing pulse trains into in-
dividuals in PAMGuard is time consuming, but alternative options 
include consideration of the PAMGuard click train detector module as an 
additional first stage detector in BANTER, or by developing a similar 
function in R to apply to events. 

For this study, only a few simple environmental features were 
considered for one of the study areas (seafloor depth, seafloor gradient, 
and sea surface temperature). In the EPacific study area, inclusion of 
these variables increased the overall classification rate from 91.1% to 
91.9%. These variables had the most impact on classification results for 
the Cross Seamount beaked whale (n = 6), raising the classification 
scores from 83.3% to 100%. Alternative environmental features may 
improve results for other species. 

While BANTER provides an efficient and consistent approach to 
classification, there are significant limitations that must be considered. 
BANTER is a supervised machine learning tool and requires reliable 
training data for success. Training data should consist of labels with 
strong confidence in species identity (ideally determined by agreement 
from more than one analyst) and sample sizes should be large enough to 
explain the natural variability in the data. 

Until deep learning methods become more accessible and practical 
for applications involving rare species and low sample sizes, or their 
applicability across recording platforms can be guaranteed, machine 
learning approaches such as BANTER can serve as an accessible means of 
developing acoustic classifiers for complicated datasets. The workflow 
presented here provides a highly automated approach to detection of 
acoustic events (PAMGuard), integration of environmental data (PAM-
pal), and acoustic event classification (BANTER). These methods 
significantly reduce manual analysis, provide more consistent classifi-
cation results with fewer biases, and provide an estimate of classification 
error. The greatest improvement to classification results for beaked 
whales would likely result from improved sample sizes, and examination 
of individuals to accurately measure IPI. Consideration of additional 

detectors (e.g., matched filter detector, click train detector) or addi-
tional environmental variables may further improve classification re-
sults. Improved alignment of detection methods across studies (i.e., 
definition of events, hydrophone calibration) may allow for combining 
data within geographic regions to improve assessments within regions 
for all species, and across regions for species with global distributions, 
such as Cuvier’s beaked whales. These highly automated methods may 
allow for analysis of data across large spatial and temporal scales to 
address large ecological and population level questions. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecoinf.2024.102511. 
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